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Abstract—In this work we propose a new approach to ac-
count for burst packet loss during transmission of 3D objects
represented by texture and mesh over unreliable networks.
Our strategy includes applying stripification on the 3D mesh
following the valence-driven algorithm and distributing nearby
vertices into different packets, combined with an interleaving
technique that does not need texture or mesh packets to be
re-transmitted. The perceptually-driven technique is able to
interpolate successfully lost mesh features even under severe
packet loss. The reconstructed mesh is improved further by
applying our curvature-driven probabilistic strategy to safeguard
visually significant structures on the 3D surface. Experimental
results show that smoothness on the object surface is preserved
even at 50% packet loss. At 75% packet loss, smoothness on
the object surface deteriorates but the overall shape of the
objects is still preserved. We also define a Quality of Experience
(QoE) metric to formulate the Just-Noticeable-Difference (JND)
concept, to quantify the qualitative findings obtained from earlier
subjective user studies, which provides flexibility to applications
for reducing the transmission of visually redundant data.

Index Terms—QoE-aware error control, Just-Noticeable-
Difference (JND), QoE metric, Burst packet loss, Unreliable
network, 3D graphics, Mesh geometry-driven.

I. INTRODUCTION

D graphics is commonly used in many online applications,
such as games, virtual reality, augmented reality and other
immersive environments including the latest 3DTV displays.
In pace with the rapidly growing online entertainment industry
and the supply of high definition display devices, increasing
user demand for higher quality and richer multimedia content
have driven application developers to search for breakthroughs
in order to satisfy user expectations and enhance viewing
experience. Furthermore, the launch of advanced wireless
communication infrastructures has broadened user’s viewing
platforms from conventional large scale virtual CAVE and
Reality Centre environments to a portable and mobile setting.
One of the major challenges associated with these techno-
logical privileges is how to provide satisfactory Quality of
Experience (QoE) so as to keep the consumers entertained
and engaged; and sustain evolving commercial products and
research.
Transmitting high definition data consumes significant band-
width. For this reason, many state-of-the-art compression algo-
rithms have been developed, associated with the introduction

of various QoE metrics, which are essential for assessing the
rendered quality of the decompressed data. These metrics can
be subjective or objective. Subjective metrics require qualita-
tive user studies. However, conducting user studies involves
tedious ethics approval process, controlled experimental setup
and recruiting a sufficiently large subject pool in order to
achieve a statistically significant outcome. Objective metrics
are based on quantitative analysis, e.g., signal-to-noise (SNR)
and mean square error (MSE), hoping that the results can
reflect the degree of satisfaction of human viewers. While
QoE metrics for 2D media have been extensively studied,
the research on incorporating human perceptual factors in the
compression and transmission pipeline for 3D content still lags
behind its 2D counterpart. In this paper, our contribution is
three-folds: (1) enhancing the viewing experience by propos-
ing a geometry-driven interleaving technique for transmitting
3D meshes over burst packet loss channels, (2) introducing a
geometry-driven curvature histogram to assign higher priority
to more noticeable surface features, and (3) formulating the
Just-Noticeable-Difference (JND) concept in a mathematical
model, which is consistent with qualitative user studies, and
applying this QoE metric to minimize the transmission of
redundant data so that constrained resources, e.g., time and
bandwidth, can be allocated to other media resulting in better
overall quality.

Transmitting texture alone, geometry alone or tex-
ture/geometry combined are challenging issues and worth
individual discussions. A JND solution for transmitting high
resolution texture taking human perception into consideration
was published by the authors in separate papers. The trade-off
between allocating limited bandwidth to texture vs. geometry
was discussed and a perceptually optimized strategy was
proposed in [5]. The focus of this manuscript is on geometry
data transmitted over burst packet loss channels.

The rest of the paper is organized as follows: Section II
reviews 3D mesh coding and introduces our perceptually-
coded interleaving strategy for burst packet loss channels.
Section III gives experimental results and analysis. Section IV
formulates our QoE metric by defining a mathematical model
to quantify the Just-Noticeable-Difference concept. Finally,
conclusion is presented in Section V.



JOURNAL OF KIgX CLASS FILES, VOL. X, NO. X, MONTH 20012

II. 3D CODING AND TRANSMISSION OVER BURST
PACKET LOSS NETWORK

3D transmission over unreliable networks needs to take into
account the possibility of packet loss, which often happens in
burst. In order to minimize the impact of burst errors on the
transmitted data, interleaving has been used by researchers
as an effective tool [28][29][30]. However, interleaving tech-
niques for 1D and 2D data such as image or video, which
have fixed adjacent distance, are not suitable for arbitrarily
connected 3D meshes, which do not follow the regular row and
column traversal pattern. Our proposed interleaving technique,
which considers both irregular traversal patterns and surface
curvature, was not studied by previous interleaving methods.

Although numerous transmission strategies have been in-
troduced in the literature, most of them were designed for
TCP/IP based networks and did not consider the possibility
of packet loss over unreliable burst channels and do not
incorporate perceptual factors to enhance QoE. In a wireless
transmission environment, where packet loss may occur as a
result of shadowing, fading and interference [21][25], a TCP
strategy, which requires retransmission, leads to further delays
and thus degradation in the quality of service. Multimedia
transmission over wireless networks were discussed in [12]
[26], but relatively little work was done addressing 3D trans-
mission over lossy channels. In later research, approaches for
robust transmission of mesh over lossy channels [1][4] have
been outlined. Chen et al. [4] assumed that the successful
transmission of the base layer was guaranteed. Progressive
refinement was achieved by subsequent layers. However, for
lossy channels, this implies retransmission of the base layer
until the data is received. Retransmission adds an overhead
on bandwidth limited connections, in particular for wireless
and mobile networks, as well as multicast, real-time or time-
constrained applications, such as interactive virtual or aug-
mented, as well as gaming, environments. Al-Regib et al. [1]
applied an adaptive scheme using error correction codes (ECC)
to correct errors at different rates. ECC uses additional bits
to correct errors, which might require significant overhead
if the error rate is high. In contrast to the retransmission
and ECC strategies, we simply assume a certain percentage
of the packets may be lost and significant overhead is not
feasible given the network constraints. In our previous work
[18][71[5][10], we discussed how perceptual factors could
help improve the quality of transmitted data; how constrained
bandwidth could be allocated efficiently between texture and
mesh data; and how arbitrary meshes were transmitted in
situations where packet loss was possible. We compared how
various types of 3D transmission strategies fared, and how
to take perceptual quality into account in designing a better
strategy. We first proposed our perceptually optimized strategy
based on a multi-resolution representation of the texture and
mesh. We then studied the transmission strategy of vertex
geometry to minimize the risk of packet loss affecting a large
neighborhood, followed by a discussion of the interpolation
methods used to reconstruct the meshes.

In a communication network, packet loss is often bursty
[12][16][2]. This can be caused by congestion on the Internet.

For wireless networks, burst packet loss can be caused by
temporary link outage or fading-induced bit error. In order to
minimize the adverse effect of burst errors, an interleaving
technique aims to prevent errors from affecting a large neigh-
borhood. Examples of interleaving techniques can be found
in the literature [27] but their focus is on 1D sequences and
2D images. The strategy is to apply a predefined distance
to separate neighboring elements in the transmitted stream,
independent of which 1D sequence or 2D images are being
transmitted. Due to the arbitrary distribution of vertices on a
3D mesh, a predefined distance is not effective because it may
work on a specific geometry while fail on another. We propose
a mesh geometry driven interleaving scheme for transmitting
arbitrary 3D meshes over burst packet loss channels. The main
idea is to automatically adapt the parameters to the geometric
property of a 3D mesh based on the maximum burst length
being considered. We conducted experiments to verify the
efficiency of the proposed method.

A. Three-Dimensional Mesh Coding

A 3D mesh is represented by geometry and connectivity
[20]. An uncompressed representation, such as the 16 ASCII
format [23], is inefficient for transmission. To encode mesh
connectivity efficiently, every polygon should be visited and
recorded in an order that is efficient for compression.

Among the many 3D mesh connectivity encoding algo-
rithms proposed since the early 1990s [19], the valence-driven
approach [22] is considered to be one of the most effective
techniques for 3D mesh connectivity compression. It has a
compression ratio of 1.5 bits per vertex on the average. In
our technique, the mesh connectivity is encoded using this
technique and transmitted over the network.

B. Our Interleaving Technique

After receiving the data over a burst packet loss channel at
the client, we first reconstruct the mesh partially based on the
geometry and connectivity information successfully received.
The vertices are then traversed and the mesh is reconstructed
following the valence-driven decoding algorithm. When a
vertex with lost geometry, L, is encountered, the adjacent
reconstructed vertices, whose geometry is either not lost or
is interpolated previously, are used to linearly interpolate the
geometry of L.

Adjacent Distance and Motivation of Mesh Geometry-
Driven Interleaving

Interleaving techniques for 1D and 2D data, which have
fixed adjacent distance, are not suitable for 3D meshes because
of their regular row and column traversal pattern. An example
of arbitrary 3D connectivity is shown in Fig. 1. A vertex
is drawn as a node in the graph. The traversal order of the
vertices is indicated by the numbers in the nodes, which are
assigned by the valence-driven algorithm. The relative adjacent
distance between two connected vertices is written on the edge.
Differing from 1D and 2D data, a 3D vertex is associated
with unequal adjacent distances to its neighbors. In Fig. 1,
the neighbors of Vertex 20 are Vertex 21, 22, 54, 60, and 99,
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@ : Vertex with sequence
number 21

2 : Edge between neighbor

vertices with distance 2
Fig. 1. An example of arbitrary neighboring vertex distance in a 3D mesh.

TABLE I
HISTOGRAM OF ADJACENT DISTANCES IN TWO 3D MESH MODELS

Cow HammerHead
Index | Adjacent | Edge Cum. Adjacent | Edge Cum.
Distance | Count | Percent | Distance | Count | Percent
0 1 2,865 32.9 1 721 32.0
1 13 282 36.1 2 66 35.0
2 12 279 394 9 54 374
3 14 210 41.8 12 51 39.7
4 11 197 44.0 10 48 41.8
5 2 162 459 11 48 43.9
6 15 115 47.2 49 48 46.0
7 10 105 48.4 43 47 48.1
8 97 74 49.3 42 44 50.1
9 98 71 50.1 48 43 52.0
99 69 50.9 8 42 53.9
96 68 51.7 50 42 55.7
82 65 52.4 13 40 57.5
16 63 53.1 39 40 59.3
88 59 53.8 46 39 61.0
89 58 54.5 47 36 62.6
100 56 55.1 45 31 64.0
109 54 55.7 40 30 65.3
Total Edges 8,706 100 2,250 100

whose adjacent distances relative to Vertex 20 are 1, 2, 34, 50
and 79 respectively.

To illustrate how adjacent distances (magnitude) vary be-
tween connected vertices on arbitrary meshes, we compute the
edge count (in descending order) associated with a particular
adjacent distance for two 3D models: Cow and HammerHead
(Table I). Observe that most edges have the shortest adjacent
distance, 1 in this case, and different meshes have different
adjacent distance frequencies as shown in the Edge Count
column in Table I. Fig. 2 shows the histograms starting from
the second highest edge count, excluding edges with distance
1. Motivated by this observation, we introduce a probabilistic
interleaving algorithm, which adaptively adjusts a control
parameter for different mesh geometries (different adjacent
distance histograms), taking the maximum burst length into
consideration.

Although we use the valence-driven algorithm as an ex-
ample to illustrate the traversal pattern on irregular meshes,
our mesh-dependent interleaving technique can work with any
mesh encoding algorithm.

Proposed Probabilistic Mesh-Dependent Interleaving

In order to minimize the adverse effect of burst packet loss,
neighboring vertices are interleaved into separate packets. An
example of how our interleaving technique works is shown in

Fig. 3. We follow the valence driven algorithm and label the
vertices in traversal order, starting from 0. The network packets
are denoted by PKTO, PKTI1, and so on. The interleaving
pattern is controlled by two parameters: B and L. Parameter B
is the maximum burst length considered and is used to define
the number of packets in a block. The other parameter L is
a control parameter computed using Algorithm 1 described
below. L and the product L x B are used to compute the
minimum distance required between elements in the same
block. The interleaving pattern using B = 2 and L = 3 is
given in Fig. 3. Blocks are separated by dotted lines (Block
0, Block 1 and Block 2 in this example). When the maximum
burst length of 2 occurs, this interleaving pattern ensures that
the neighbor of a lost vertex survives the burst.

B=2,L=3:
PKTO PKTI1
NZ

N%
Distance {
=B*L=6 n n

B

-] L

o’

Distance
=L=3

Fig. 3. Vertex interleaving for network packets using our probabilistic mesh-
dependent interleaving strategy.

Let PKT; be a network packet where i(: = 0,1,2,...)
is the sequence number and j(j = 0,1,2,...) is the position
number of a vertex in a network packet. The blocks of packets
can be viewed as a matrix with j rows and ¢ columns. We
can associate a vertex label [ (traversal order) with a (4, 7)
coordinate using Equation 1:

l:ijxL+(z‘modB)xL+%J )

For example, in Fig. 3, the label | of the 3"¢ vertex in
PKT4, ie., i = 4,5 = 2, is calculated as follows:

4
2% Bx L+(Amod B)x L+ ||

4
2><2><3+(4mod2)><3+[§J
— 1

The j x ¢ matrix has L blocks and each block has B packets.
In Equation 1, the first term j X B x L indicates that each
row has B x L elements in the j x ¢ matrix. In the second
term, (¢ mod B) X L, (¢ mod B) denotes the packet sequence
number in each block and L represents the adjacent distance
of the vertices with the same j value in each block. The third
term | £ | indicates the block number in the matrix. We have
the following lemma.

Lemma 1: The adjacent distance between two vertices in
the same block is a multiple of L and the adjacent distance
between two vertices in each packet is a multiple of B x L.
Proof: Suppose two vertices in a block are (i1, 71) and (iz, j2).



JOURNAL OF KIgX CLASS FILES, VOL. X, NO. X, MONTH 20012

300 -
250 -
200 .

150

Edge Count

- J_‘ ahosadedd e, - PORPIERR W
100 150 200 250 300 350 400 450 500 550 600
Adjacent Distance

2 50

Fig. 2.
distance frequencies are mesh geometry-dependent.

Since vertices_ in the same block have the same block number,
we obtain L%J = L%J From Equation 1, the adjacent
distance between two vertices in the same block is:

|j1xBxL+(i1modB)><L+{%J

~ (2xBxL+(izmod B)x L+ |2]]

= |(j1 — j2) X B+ (i1 mod B) — (i mod B)| x L,

which is a multiple of L.

The vertices in each packet have the same ¢. Suppose that
two corresponding vertices are (i,j1) and (4, j2). Therefore,
the adjacent distance between the vertices in each packet is:

1% B x Lt (i mod B) x L+ | |

— (2 X Bx L+ (imod B)x L+ | +])|
= |j1—Je| x BxL

which is a multiple of B x L.

Note that the above interleaving pattern illustrates the
minimum number of packets that satisfies the adjacent
distance restriction. A higher number of packets can be
transmitted by partitioning each block horizontally and by
dividing each packet (PKT;) into smaller packets.

Computation of Control Parameter L

We put B packets in a block, inside which the adjacent
distance between corresponding elements at the same j
position in consecutive packets is L. For example, in Fig.
3, PKTO and PKT1 belong to a block, while PKT2 and
PKT3 belong to another block. When a burst error occurs,
the maximum loss is one block or two consecutive packets.
The parameter L is computed so that vertices in the same
neighborhood are distributed into different blocks. Suppose
a burst error occurs and PKTO and PKTI1 are lost, then
so is Vertex 3; but, Vertex 3 can be reconstructed based
on the geometry information in its neighbors which are
not lost. However, if its neighbors are transmitted in the
same block, then a larger piece of the surface geometry
is lost and reconstruction based on interpolation is less
accurate. We choose a proper value for L based on Theorem
1, to avoid adjacent vertices being assigned to the same block.

0o

Edge Count

100 110 120

40 50 60 70 8 90
Adjacent Distance

The histograms of two 3D mesh models: Cow (Left) and HammerHead (Right), starting from the second highest edge count, show that adjacent

Theorem 1: If the adjacent distance between two neighbor-

ing vertices in a mesh is not a multiple of L, the vertices in
the same block are not adjacent in the mesh.
Proof: According to Lemma 1, the adjacent distance between
two vertices in the same block is a multiple of L. If the
adjacent distance between any neighboring vertices in the
mesh is not a multiple of L, then the vertices in the same
block cannot be adjacent in the mesh.

To avoid adjacent vertices being lost in a bursty channel,
we define a confidence level I' to guarantee that at least this
percentage of adjacent elements will not appear in the same
block. This is achieved by choosing an appropriate L value
based on the mesh geometry using Algorithm 1 (given in
Appendix A), where we find the minimal L, which is not
divisible by the adjacent distances covered by the cumulative
percentage I', in order to use as few packets as possible
for network efficiency. If there are too many vertices for
transmission in L X B packets, the number of packets can be
increased to a multiple of L x B. For example, if the number of
vertices is V' and the maximum number of vertices that could
be transmitted in a network packet is v, the number of packets
ﬁ

used is { —‘ x L x B. In this case, to map the vertices

into network packets, we just replace B by [ﬁ—‘ x B.
Once a proper L value is chosen, vertices can be assigned
into network packets and retrieved from network packets in a
proper order. (Algorithms 2 & 3 are given in Appendix A).

ITIT. EXPERIMENTAL RESULTS AND ANALYSIS

Quantization, prediction and statistical coding are used to
compress the geometry data. However, a common character-
istic for all transmission strategies, for lossy channels without
error correction or re-transmission, is that the lost data can
only be reconstructed based on information available within
the same packet. The reason is because of the assumption
that other packets can be lost. Since the vertices within the
same packet in our technique are not adjacent neighbors, the
compression rate cannot be as efficient as the valence-driven
approach [22], which has a compression ratio of 1.5 bits
per vertex on the average for encoding mesh connectivity.
Nevertheless, the valence-driven approach is designed for
reliable networks. In general, the compression rate of strategies
for lossy channels is less efficient than those for reliable
channels. Also, note that the encoding of connectivity costs
only about 10% of what is needed for encoding geometry
[31]. The overhead of using our technique to overcome the
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Fig. 4. Comparison of results: (Left) no interleaving; (Middle) fixed-parameter interleaving; (Right) our mesh geometry-dependent interleaving.

RECONSTRUCTION ERROR AFTER TRANSMITTING THROUGH BURST PACKET LOSS CHANNELS USING A CONFIDENCE LEVEL OF 80%

TABLE I

Reconstruction Error(Hausdorff distance of metro tool [30])

Overall loss probability =0.25 Overall loss probability =0.50 Overall loss probability =0.75

Model Average No Inter- Fixed Our No Inter- Fixed Our No Inter- Fixed Our

(Vertex burst length leaving Inter- Inter- leaving Inter- Inter- leaving Inter- Inter-
Number) B and B leaving leaving leaving leaving leaving leaving
Armadillo B=2B=4 6.414548 5.072178 3.653101 6.414548 5.07217* 6.512835 9.990111 9.814941 8.795731
(1,752) B=3B=6 7.919993 5.754521 3.694067 | 8.227816 7.501959 5.749495 | 23.776726 11.85642 11.16828
B=5B=10 8.642299 3.817449 3.374231 9.784201 6.51283* 10.227290 | 12.583591 18.94281 7.836614
B=8B=16 7.314794 7.430123 3.969433 | 10.111954 8.704135 7.041734 9.040297 11.12948 9.590316
B =16,B=32 | 9.772218 2.925999 | 2.613735 | 9.074914 4.70990* 7.430123 14.351581 12.97940 10.65304
Bunny B=2B=14 0.003803 | 0.003299* | 0.004887 | 0.005294 0.00324* 0.004177 0.007525 0.00642* | 0.009103
(2,503) B=3B=6 0.005332 | 0.002247* | 0.002675 | 0.005333 0.004212 0.003051 0.010152 0.00691* | 0.009133
B=5B=10 0.005958 0.002724 0.002321 0.004219 0.004020 0.003440 0.008195* 0.008510 0.008642
B=8B=16 0.006558 0.002724 | 0.002015 | 0.011808 0.006049 0.003902 | 0.006706* | 0.010426 | 0.007836
B =16,B=232 | 0.007189 0.002719 | 0.002430 | 0.009112 0.004455 0.003273 0.012534 0.005786 | 0.013182
Cow B=2B=14 0.028558 0.028422 | 0.015234 | 0.025717* | 0.028361 0.028361 0.028803* | 0.033525 | 0.037176
(2,904) B=3B=6 0.028361 0.014078 | 0.011498 | 0.052100 0.02857* 0.028361 0.037924* | 0.039583 | 0.061668
B=5B=10 0.028543 0.028352 0.012177 0.035720 0.022341 0.021634 0.036498 0.036604 0.036384
B=8B=16 0.030541 0.016767* | 0.017503 | 0.039978 0.028422 0.023404 0.069975 0.035720 | 0.038703
B =16,B=232 | 0.049300 0.018703 | 0.010858 | 0.074655 0.029358 0.028422 0.080797 0.048883 | 0.036678
Dinosaur B=2B=141 1.725558 1.003255* | 1.057358 | 2.239904 1.744817 1.519358 2275198 | 2.286047* | 2.580115
(5,000) B=3B=6 2488605 | 0.797432* | 1.032733 | 2.488605 1.48978* 1.609889 14.732584 | 3.136629 | 2.604890
B=5B=10 1.871356 0.941308 0.892378 2.688417 1.64225% 1.677934 3.775949 2.708860 2.219183
B=8B=16 2.498059 1.144875 | 0.869984 | 2.956688 2.046298 1.466011 4.056268 3.990355 | 2.776798
B =16,B =32 4.052977 0.846244 0.746002 2.243943 1.919845 1.617296 3.825114 3.33772% 4.612769
Hammer B=2B=14 0.042211 0.030476 | 0.027487 | 0.061547 0.046718 0.045592 | 0.058907* | 0.068149 | 0.080285
Head B=3B=6 0.059997 | 0.019541* | 0.025401 0.063380 0.063042 0.033602 1.114240 0.04851* | 0.069737
(752) B=5B=10 0.032809 0.029024 | 0.023440 | 0.032253 0.062119 0.036285 0.080349 0.075982 | 0.052423
B=8B=16 0.080349 | 0.025024* | 0.027417 | 0.117185 0.03770%* 0.047700 0.050160 0.065599 | 0.037467
B =16,B =232 | 0.080349 0.019309 | 0.015704 | 0.027887 0.068105 0.029026 0.039274 0.070234 | 0.068480
Venus B=2B=14 0.014420 | 0.008777* | 0.009574 | 0.018623 0.01166* 0.012738 0.020197 0.019288 | 0.016522
(8,268) B=3B=6 0.019706 0.010910 0.007925 0.019981 0.01033* 0.013955 0.023202 0.01970* 0.023027
B=5B=10 0.020908 0.007976 | 0.008459 | 0.014658 0.01046* 0.014187 0.021176 0.01944* | 0.019928
B=8B=16 0.017097 0.008362 | 0.006730 | 0.022764 0.00970%* 0.009855 0.020809 0.027700 | 0.026078
B =16,B =32 0.017991 0.011013 0.008412 1.041932 0.021760 0.016782 0.040121 0.022040 0.021407
Armadillo B=2B=4 0.005483 | 0.003963* | 0.004415 | 0.006853 0.005660 0.005237 | 0.008888* | 0.010021 0.009696
(34,594) B=3B=6 0.005279 0.003519* | 0.003996 0.008026 0.005164* 0.005467 0.012097 0.011502* | 0.012722
B=5B=10 0.006018 0.003619 | 0.003260 | 0.012782 | 0.005086* | 0.005867 0.012901 0.008806* | 0.009424
B=8B=16 0.006173 | 0.002623* | 0.003832 | 0.023105 | 0.005736* | 0.005920 0.020554 0.009275 | 0.006168
B =16,B =32 0.007424 0.002558 0.002385 0.013594 0.003980 0.003886 0.021538 0.006087* | 0.011003
Horse B=2B=4 0.001561 0.001336 | 0.001059 | 0.001319 0.001510 0.001177 | 0.001855* | 0.002389 | 0.002328
(48,485) B=3,B=6 0.000911* | 0.001320 | 0.001343 | 0.001718 0.001550 0.001191 0.002490 0.002269 | 0.002352
B=5B=10 0.001311 0.001039 | 0.000904 | 0.002421 0.001181* | 0.002482 0.002272 | 0.001920* | 0.002134
B=8B=16 0.001100 | 0.000741* | 0.001060 | 0.002880 0.001379 0.001378 0.002906 | 0.001322* | 0.002341
B =16,B =32 0.001192 0.000904 0.000793 0.001852 0.001238 0.001156 0.004214 0.001156* | 0.002923

lossy transmission without error correction and retransmission
is that it needs B + 1 (the maximal burst length) reference
vertices instead of one reference vertex for compression in
the lossless transmission. For 3D models with thousands of
vertices, this overhead is relative small. Our comparisons with
no-interleaving and fixed-interleaving methods were based on
the same available bandwidth and no additional overhead was
incurred in our technique, which demonstrates a novel inter-
leaving pattern robust to burst packet loss that outperformes
other methods in general. Compared to re-transmission, our
technique requires less overhead.

In order to verify our probabilistic mesh geometry-
dependent interleaving technique, we conducted experiments
using different arbitrary 3D meshes. A confidence level of
80% was used throughout our experiments. Similar to [2][24],
we simulated the burst packet loss channel by a two-state
Markov model known as the Gilbert model [14]. The overall
loss probability of the channel was set to 25%, 50%, and 75%.
The average burst length B of packet loss was set to 2, 3, 5,
8, and 16 packets.

Fig. 4 shows the reconstructed HammerHead fish mesh
after transmitting (Left) with no interleaving, (Middle) with
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fixed-parameter interleaving, and (Right) with our mesh
geometry-dependent interleaving using a burst packet loss
channel with overall loss probability equal to 25% and burst
length equal to 5. Note that when no interleaving or fixed-
parameter interleaving was applied, a larger area of the ge-
ometry was lost. When our mesh-dependent interleaving was
applied, the lost vertices were distributed more evenly.

More examples are shown in Fig. 7. The meshes were
transmitted with 50% and 75% packet loss respectively and
with a burst length equal to 16. The results show that smooth-
ness on the object surface was preserved even at 50% packet
loss. At 75% packet loss, smoothness on the object surface
deteriorated but the overall shape of the objects was still
preserved. It is important to point out that the visual quality
of the reconstructed mesh is affected by the original density
of the mesh [9]. Less dense meshes have higher possibility
of displaying artifacts due to burst packet loss because of the
larger relative change (relative change and Just-Noticeable-
Difference will be discussed in the next Section). The Dinosaur
mesh had a high density of 5000 vertices, and the visual
quality of the reconstructed mesh at 75% packet loss was
satisfactory. The other meshes with lower density: Armadillo,
Bunny and Cow, showed obvious degradation in visual quality
after reconstruction at 75% packet loss.

We use the metro tool [11] to measure errors between
original models and reconstructed models based on Hausdorff
distance. The metro tool applies surface sampling and point-
to-surface distance computation. It samples vertices, edges
and faces by taking a number of samples that is approxi-
mately 10 times the face number. The reconstruction errors
of three transmission strategies: without interleaving, with
fixed-parameter interleaving (L = 64), and with our mesh
geometry-driven interleaving using a burst packet loss channel,
are shown in Table II using 6 models. The lost geometry was
interpolated as described in Section II.B above. Among all
the 120 cases, the no interleaving approach had the smallest
reconstruction error in 9 cases (7.50%), the fixed-parameter
interleaving method had the smallest reconstruction error in
41 cases (34.17%), and our mesh geometry-driven interleaving
technique had the smallest reconstruction error in the remain-
ing 70 cases (58.33%). The comparison results verify that in
general the interleaving methods perform better than a strategy
with no interleaving, and our probabilistic geometry-driven
interleaving technique performs better than the fixed-parameter
interleaving technique.

While some applications are able to tolerate higher loss,
others may need to restrict the loss below a specified level
(a psychophysical interpretation of this threshold is given
in Section IV). We improve the reconstructed mesh further
by applying our curvature-driven probabilistic strategy [32]
to safeguard visually significant structures on the 3D sur-
face. Critical mesh features, with high curvature, like sharp
edges and corners are assigned higher priority to improve
the reconstruction results. A curvature index of a normalized
mesh, describing the relative elevation of a visually significant
surface feature from the average plane formed by its adjacent
vertices, is added to the transmission pipeline and stored in a
predefined adjacent vertex when the probability of packet loss

becomes unacceptable. For model reconstruction purpose, a
lookup table recording a number of elevation levels is used.
Based on the 3D models tested, sixteen levels are generally
sufficient and each index requires 4 bits to encode. Thus,
the actual bandwidth taken up by the curvature indices is
dependent on the probability of packet loss, the tolerance of
an application, and is mesh geometry-driven. For relatively
smooth surfaces, curvature index is not necessary.

We assume that there is a significant curvature level or
Just-Noticeable-Difference (JND) threshold (Fig. 5) beyond
which (to the left of the dotted vertical line in Fig. 5) linear
interpolation can be applied without generating noticeable
visual artifacts to the HVS, and thus no extra protection on
those curvature is necessary. The assumption is based on our
user study observation of JND on 3D objects [8][6].

Significant
Curvature
Level

Decreasing
Curvature

# of vertices

1 2 3 i
Sub-range

m2 m-1 m

Fig. 5. An example of curvature histogram: surface feature points are
prioritized (with more significant ones on the right) based on their visual
impacts.

IV. THE PROPOSED JND VISUAL DISCRIMINATION
METRIC

Although earlier study [8][6] observed that a JND threshold
is associated with 3D objects visualization, an average thresh-
old may not be sufficient for some applications, which need
to adjust the percentage of target users, or select a minimum
or maximum threshold so that the target users will be satisfied
with the quality delivered over the transmission pipeline. We
thus propose in this section a visualization discrimination
model, based on which an application can alter appropriate
parameters to estimate the percentage of user population
meeting certain criteria.

Given a 3D model as stimulus, the perceptual impact varies
from one viewer to another. The probability that a viewer @
can correctly discriminate the visual quality of the stimulus
P(6,) is dictated by the chance of guessing correctly (¢) and
the relative change (7(d,, d.)) generated on the model surface
[8][6]. This psychophysical concept follows the same spirit
as how ability or other hypothesized traits are described in
Item Response Theory (IRT) [17]. We model the probability
of correctly discriminating a stimulus by a viewer ¢ as:

1—c
1 + ed(0i—7(dz.d-)

where d is a constant and 7(d,,d,) is an implicit function.
Given an original surface S;, our approach first computes
the medial axis M; of S;. The new simplified surface Sy can
be generated through edge collapse [15][13] replacing vertices
Vz,Vy € S; with a new vertex V, € Sk, or through vertex
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Visual Discrimination Model
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Fig. 6. 6 (Left) given a range of discrimination ability, the probability of correct discrimination follows a S-shape curve; and (Right) given a relative change
(stimulus), the perceptual impact function defines a diminishing impact when the change occurs farther away from the medial axis on the 2D projection -

max(dg,d,) gets bigger.

removal followed by hole-filling [3]. In the latter case, the
center of the average plane formed by the neighbors of the
vertex removed is denoted as V,. If multiple changes occur,
removing connected neighbors, the final V, is chosen. Given
a surface change starting at V, and terminating at V, the
implicit function is defined by:

|dm — d2|
7(da, dz) = max(d,,d,) ©)
where d, and d, are the shortest distances of V, and V, from
M; respectively.

The S-shape function (Eq. 2) is often called the sigmoid
curve or psychometric curve (Fig. 6(Left). The bottom left
convergence of the curve represents the highest difficulty to
discriminate relative to a viewer’s ability. In this case, a
viewer with low discrimination ability has to guess and the
probability of guessing correctly based on the two-alternative-
forced-choice (2AFC) [6] setting is 50% after a sufficiently
large number of discrimination tests have been conducted. The
top right convergence indicates that a viewer with high ability
can correctly discriminate 100% of the time. The point of
inflection (75% correctness) of the psychometric curve pro-
vides the average threshold. Above the threshold and moving
towards the right, the probability of a viewer discriminating
correctly increases, while moving towards the left below the
threshold, the probability of a viewer discriminating correctly
decreases ending up with guessing.

We define this model to explain the perceptual impact
caused by deleting or adding a vertex on a mesh surface, filling
the void by interpolation similar to the reconstruction process
after packet loss. The left convergence corresponds to guessing
by the viewer when the change is not noticeable. Moving along
the curve from left to right indicates that an increasingly higher
percentage of viewers can correctly discriminate as the change
becomes more noticeable, and ultimately when the change
is obvious 100% of the viewers can discriminate correctly.
The point of inflection is defined as the JND threshold of
relative change. The HVS responds to relative change instead
of absolute change when discriminating curvature artifacts
on 3D surfaces [8][6]. |d.,d.|/ max(d,,d.) represents the
relative change on a 3D surface.

We are interested in the threshold where the relative change

of a stimulus is just noticeable. Note that in the JND Visual
Discrimination Model the perceptual impact generated by
the relative change 7(d,,d,) diminishes when the change
occurs farther away from the medial axis of the mesh (Fig.
6(Right) on the 2D projection, when max(d,, d.) gets bigger.
This characteristic of diminishing visual impact is invariant
to changing distance from the medial axis (illustrated by the
various curves in Fig. 6(Right). Our JND quality estimation
formulation captures the observations obtained in subjective
user studies [6].

A detailed discussion of the JND threshold and comparisons
with other psychophysical findings in non-3D cases were given
in [8] [6], where the advantage of using JND in visualizing 3D
models was validated by conducting subjective user studies.
However, no mathematical formulation was published before.
The formulation contains the important parameters used in the
subjective user studies [6], namely the probability of guessing
and relative change. The customization of these parameters
is application dependent. By adjusting the parameters, the
visual discrimination curve will become steeper or flatter, and
thus increase or decrease the percentage of target users, as
well as the minimum and maximum thresholds required in an
application. The JND formulation helps to suppress visually
redundant data from the transmission pipeline, which will not
improve QoE.

V. CONCLUSION

In this paper we introduced a mesh geometry-driven in-
terleaving and surface curvature evaluation strategy for 3D
meshes transmitted over unreliable networks taking burst
packet loss into account. We also formulated a QoE metric
on Just-Noticeable-Difference (JND) of relative change, to
preserve visually significant and suppress visually redundant
data, based on our earlier qualitative observations obtained
from subjective user studies. Experimental results were shown
with arbitrary meshes to demonstrate that the approach works
well even when a high percentage of packets are lost. We dis-
tributed neighboring vertex information into different packets
to minimize the risk of lost data affecting a large neighbor-
hood, and assigned higher priority to surface features with
higher curvatures, which generates bigger visual impacts if
lost during transmission. Experiments on models with different
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Fig. 7.
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Different models: Armadillo(15¢,1, 752vertices);bunny(2"¢ column, 2, 503 vertices); cow(3"% column, 2,904 vertices) and dinosaur (4t" column,

5,000 vertices), reconstructed using our interleaving strategy. The original models are shown in the first row. Reconstructed models at 50% and 75% packet
loss (average burst length = 16) are shown in the second and third rows respectively.

resolutions show satisfactory outcome outperforming other
interleaving techniques in general, indicating that smoothness
on the object surface was preserved even at 50% packet loss. In
future work we will apply our JND model to enhance the QoE
of stereoscopic and multi-viewpoint 3D, as well as animation
data transmitted over mobile networks and devices.

APPENDIX A

Algorithms 1 - Computing parameter L
1. Given a mesh, obtain its histogram H (Table I);
2. Sett =0 and while (H.CumPercent[t] <T) t++;
3. Set MaxDist = the longest adjacent distance in H;

Given B, search the minimum L from 2 to [2fazDist]
satisfying confidence level T':

4, L =2;

5. while (B % L <= MaxD:ist) do

6. found = true;

7 for (m =0 to t) do

8 if (L is divisible by H.distance[m])
9. found = false;

10. break;

11. // for m;

12. if (found) // found satisfying L

13. break;

14. L++; // increase L

15. // while;

16. return L;

Algorithms 2 - Computing (¢, j) coordinates for a vertex

Computing j:
Given a traversal order [ of a vertex, the position j of the
vertex in a packet is given by: j = |I/(B x L)| according to
Equation 1;

Computing :

We first get the packet distribution with j equal to 1 in
network pakcets using Equation 1.

1. for(k=0to (BxL—1))do

2. Packet[k] = (k mod B) x L + |k/B]

3. [ffor k

Then we find the matcing 1,

4. nMod = v mod (B x L);

5. for(i=0to (BxL—1))

6. if(nMod == Packet[7]) then
7. break;

8. [/ forq

9. return 7;

Algorithm 3 - Computing vertex travesal order v given
(i, )

Use Equation 1

1. return(j * B L + (i mod B) « L + |i/B]);
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